Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Masaaki Tomura<sup>a</sup>\* and Yoshiro Yamashita<sup>b</sup>

<sup>a</sup>Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan, and <sup>b</sup>Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

Correspondence e-mail: tomura@ims.ac.jp

#### Key indicators

Single-crystal X-ray study T = 296 KMean  $\sigma$ (C–C) = 0.017 Å R factor = 0.063 wR factor = 0.174 Data-to-parameter ratio = 8.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

An unsymmetrical tetrathiafulvalene with a fused 1,2,5-thiadiazole ring and an ethylenedioxy group

> In the crystal structure of the title compound, 4,5-ethylenedioxy[1,2,5]thiadiazolotetrathiafulvalene,  $C_8H_4N_2O_2S_5$ , a large number of short intermolecular S···S contacts are observed. The molecules stack along the *c* axis in a face-toface fashion.

# Comment

In recent years tetrathiafulvalene (TTF) derivatives with a fused 1,2,5-thiadiazole ring have received much attention as component molecules for organic conducting solids (Tomura *et al.*, 1993; Underhill *et al.*, 1993; Naito *et al.*, 1996; Tomura & Yamashita, 1997). Intermolecular interactions caused by  $S \cdots N$  and  $S \cdots S$  heteroatom contacts may increase the dimensionality in the solid state (Yamashita & Tomura, 1998). The title unsymmetrical TTF derivative, (I), contains a fused 1,2,5-thiadiazole ring and an ethylenedioxy group. Two superconductors based on bis(ethylenedioxy)tetrathia-fulvalene (BEDO-TTF) are known to date (Beno *et al.*, 1990; Kahlich *et al.*, 1991). We report here the molecular and crystal structure of (I).



Compound (I) crystallizes in the space group  $Pna2_1$ . Its molecular structure is shown in Fig. 1 and selected geometric parameters are given in Table 1. The molecule of (I) is bent slightly at the central C1==C4 bond. The dihedral angle between the two least-squares planes (S1/S2/S5/N1/N2/C1/C2/C3 and S3/S4/O1/O2/C4/C5/C6) is 12.4 (4)°. The maximum and r.m.s. deviations of fitted atoms from the least-squares plane for all non-H atoms are 0.49 (1) for C8 and 0.20 Å, respectively. The geometric parameters of the 1,2,5-thia-diazole ring in (I) are almost the same as those of 3,4-diphenyl-1,2,5-thiadiazole (Mellini & Merlino, 1976).

Fig. 2 shows the packing of (I), viewed along the c axis. A large number of short intermolecular S···S contacts within the sum of the van der Waals radii (Pauling, 1960) are observed (Table 2), but no short heteroatom contacts involving the N and O atoms exist in the crystal. Two types of dimers are formed *via* the short S···S contacts. One is composed of two parallel molecules and the other is formed by a T-shaped molecular arrangement. The molecules stack along the c axis, where the distance between the molecular planes is 3.59 (1) Å.

Received 18 December 2002 Accepted 24 December 2002

Online 17 January 2003

Acta Cryst. (2003). E59, o145-o147

© 2003 International Union of Crystallography

Printed in Great Britain - all rights reserved



Figure 1

Molecular structure of (I), with the atomic numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level ..



#### Figure 2

Packing diagram of (I), viewed along the *c* axis. Dashed lines indicate the short intermolecular S...S contacts.

TTF derivatives with a fused 1,2,5-thiadiazole ring tend to stack in a head-to-tail fashion (Tomura & Yamashita, 2001). In the stacking of (I), however, the molecules overlap face-toface with each other.

## **Experimental**

The title compound was synthesized according to the literature method of Tomura & Yamashita (1997). Orange crystals of (I) suitable for X-ray analysis were grown from a toluene solution.

#### Crystal data

| $C_8H_4N_2O_2S_5$                    | Cu Ka radiation                           |
|--------------------------------------|-------------------------------------------|
| $M_r = 320.43$                       | Cell parameters from 18                   |
| Orthorhombic, Pna21                  | reflections                               |
| a = 21.7363 (10)  Å                  | $\theta = 14.1 - 42.7^{\circ}$            |
| b = 12.9552 (6) Å                    | $\mu = 9.43 \text{ mm}^{-1}$              |
| c = 3.9938(5) Å                      | T = 296 (2)  K                            |
| $V = 1124.65 (16) \text{ Å}^3$       | Needle, orange                            |
| Z = 4                                | $0.40 \times 0.04 \times 0.02 \text{ mm}$ |
| $D_x = 1.892 \text{ Mg m}^{-3}$      |                                           |
| Data collection                      |                                           |
| Enraf–Nonius CAD-4                   | 791 reflections with $I > 2\sigma(I)$     |
| diffractometer                       | $\theta_{\rm max} = 74.2^{\circ}$         |
| $\omega$ –2 $\theta$ scans           | $h = -27 \rightarrow 0$                   |
| Absorption correction: $\psi$ scan   | $k = 0 \rightarrow 16$                    |
| (North et al., 1968)                 | $l = -4 \rightarrow 0$                    |
| $T_{\min} = 0.116, T_{\max} = 0.834$ | 3 standard reflections                    |
| 1303 measured reflections            | frequency: 120 min                        |
| 1303 independent reflections         | intensity decay: 0.4%                     |

#### Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_o^2) + (0.0859P)^2]$                      |
|---------------------------------|--------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.063$ | where $P = (F_o^2 + 2F_c^2)/3$                               |
| $wR(F^2) = 0.174$               | $(\Delta/\sigma)_{\rm max} < 0.001$                          |
| S = 1.05                        | $\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$    |
| 1303 reflections                | $\Delta \rho_{\rm min} = -0.87 \mathrm{e} \mathrm{\AA}^{-3}$ |
| 154 parameters                  | Absolute structure: (Flack, 1983);                           |
| H-atom parameters constrained   | 0 Friedel pairs                                              |
|                                 | Flack parameter $= 0.03 (10)$                                |

## Table 1

Selected geometric parameters (Å, °).

| S1-C2    | 1.726 (11) | O1-C5    | 1.369 (12) |
|----------|------------|----------|------------|
| S1-C1    | 1.796 (12) | O1-C7    | 1.468 (19) |
| S2-C3    | 1.740 (12) | O2-C6    | 1.363 (12) |
| S2-C1    | 1.758 (12) | O2-C8    | 1.453 (14) |
| \$3-C5   | 1.751 (11) | N1-C2    | 1.317 (14) |
| S3-C4    | 1.765 (12) | N2-C3    | 1.281 (12) |
| S4-C6    | 1.754 (11) | C1-C4    | 1.322 (14) |
| S4-C4    | 1.759 (12) | C2-C3    | 1.444 (16) |
| S5-N1    | 1.653 (9)  | C5-C6    | 1.323 (16) |
| \$5-N2   | 1.662 (10) | C7-C8    | 1.400 (18) |
|          |            |          |            |
| C2-S1-C1 | 94.1 (6)   | C3-C2-S1 | 117.7 (9)  |
| C3-S2-C1 | 95.1 (5)   | N2-C3-C2 | 115.2 (10) |
| C5-S3-C4 | 93.7 (5)   | C2-C3-S2 | 116.2 (8)  |
| C6-S4-C4 | 93.6 (6)   | S4-C4-S3 | 115.6 (6)  |
| N1-S5-N2 | 98.8 (5)   | C6-C5-O1 | 124.8 (10) |
| C5-O1-C7 | 107.3 (11) | C6-C5-S3 | 118.2 (8)  |
| C6-O2-C8 | 108.6 (9)  | C5-C6-O2 | 124.9 (10) |
| C2-N1-S5 | 106.0 (8)  | C5-C6-S4 | 118.3 (8)  |
| C3-N2-S5 | 106.4 (8)  | C8-C7-O1 | 110.6 (12) |
| S2-C1-S1 | 116.1 (6)  | C7-C8-O2 | 112.3 (11) |
| N1-C2-C3 | 113.6 (10) |          |            |
|          |            |          |            |

#### Table 2 Short intermolecular $S \cdots S$ contacts (Å).

| (5) $S5 \cdots S1^{v_1}$ $3.547$ (2)         (5) $S5 \cdots S3^v$ $3.610$ (2) |
|-------------------------------------------------------------------------------|
| (5) $S5 \cdots S1^{v_1}$ 3.547 (5)                                            |
|                                                                               |
| (5) $S5 \cdots S1^{v}$ 3.541 (5)                                              |
| (5) $S4 \cdots S2^{iv}$ 3.519 (5)                                             |
| (                                                                             |

Symmetry codes: (i)  $\frac{1}{2}$ ; (ii)  $\frac{1}{2}$  $\frac{1}{2}, \frac{1}{2} + z$ ; (iii)  $1 - x, 2 - y, \frac{1}{2} + z$ ; (iv) x, yx, y $1 - x, 2 - y, z - \frac{1}{2}; (v) \frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} + z; (vi) \frac{1}{2} - x, \frac{1}{2} + y, z - \frac{1}{2}.$ 

All H atoms were placed in geometrically calculated positions and refined using a riding model, with C-H set to 0.97 Å. The short C7-C8 bond length [1.40 (2) Å] may be due to positional disorder of the C7 and C8 atoms. This type of disorder is often observed in TTF derivatives with an ethylenedithio or ethylenedioxy group.

Data collection: CAD-4 EXPRESS Software (Enraf-Nonius, 1992); cell refinement: CAD-4 EXPRESS Software; data reduction: teXsan (Molecular Structure Corporation/Rigaku Corporation, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

### References

- Beno, M. A., Wang, H. H., Kini, A. M., Carlson, K. D., Geiser, U., Kwok, W. K., Thompson, J. E., Williams, J. M., Ren, J. & Whangbo, M.-H. (1990). Inorg. Chem. 29, 1599-1601.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEP-III. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Enraf-Nonius (1992). CAD-4 EXPRESS Software. Version 5.1. Enraf-Nonius, Delft, The Netherlands.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Kahlich, S., Schweitzer, D., Heinen, I., Lan, S. E., Nuber, B., Keller, H. J., Winzer, K. & Helberg, H. W. (1991). Solid State Commun. 80, 191–195.
- Mellini, M. & Merlino, S. (1976). Acta Cryst. B32, 1074–1078.
- Molecular Structure Corporation/Rigaku Corporation (2000). teXsan. Version 1.11. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA, and Rigaku Corporation, 3–9–12 Akishima, Tokyo, Japan.
- Naito, T., Kobayashi, A., Kobayashi, H. & Underhill, A. E. (1996). Chem. Commun. pp. 521–522.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Pauling, L. (1960). *The Nature of the Chemical Bond*. Ithaca: Cornell University Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tomura, M., Tanaka, S. & Yamashita, Y. (1993). Heterocycles, 35, 69-72.
- Tomura, M. & Yamashita, Y. (1997). Synth. Met. 86, 1871-1872.
- Tomura, M. & Yamashita, Y. (2001). Acta Cryst. E57, o307-o308.
- Underhill, A. E., Hawkins, I., Edge, S. & Wilkes, S. B. (1993). Synth. Met. 56, 1914–1919.
- Yamashita, Y. & Tomura, M. (1998). J. Mater. Chem. 8, 1933-1944.